Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNAmediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolaemediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid.Caveolae-mediated transcellular transport of macromolecules through endothelial cells (ECs) 2 lining blood vessels is a highly selective and regulated process (1). Although the signaling mechanisms regulating the invagination and internalization (endocytosis) of caveolae have not been fully characterized, it was shown that Src-dependent phosphorylation of the large GTPase dynamin-2 (2, 3) and its recruitment to the neck of caveolae (4), phosphorylation of caveolin-1 Tyr-14 (5) and subsequent recruitment of actin cross-linking protein filamin A (FilA) to caveolae (6), and dynamic actin remodeling (7) are some of the general requirements (8).In addition to the large GTPase dynamin-2, which is required for fission of caveolae from the plasma membrane, several small GTPases detected in caveolin-enriched membrane fractions have been proposed to participate in caveolae-mediated transport. For example, Cdc42, a small GTPase of the Rho family, was detected in caveolae (9), where it is thought to control caveolae-mediated endocytosis by regulating actin polymerization and interactions between the actin cytoskeleton and intersectin, a scaffolding protein required for efficient fission and internalization of ...