Induction of tolerance is likely to be essential for successful xenotransplantation because immune responses across xenogeneic barriers are vigorous. Although mixed hematopoietic chimerism leads to stable donor-specific tolerance in allogeneic and closely related xenogeneic (eg, rat-to-mouse) combinations, the ability of this approach to induce tolerance across a highly disparate xenogeneic barrier has not yet been demonstrated. In this study, we investigated the immune responses of murine T cells that developed in mice with pre-established porcine hematopoietic chimerism. Our results show for the first time that induction of porcine hematopoietic chimerism can eliminate the development of antiporcine donor responses in a highly disparate xenogeneic species. Porcine hematopoietic chimeras showed donor-specific nonresponsiveness in the mixed lymphocyte reaction, lack of antidonor IgG antibody production, and acceptance of donor skin grafts. Thus, mixed chimerism is capable of inducing tolerance in a highly disparate xenogeneic combination and may have clinical potential to prevent xenograft rejection. (
IntroductionXenotransplantation provides a possible solution to the severe shortage of allogeneic organs, a major limiting factor in clinical organ transplantation. In view of the ethical issues and impracticalities associated with the use of nonhuman primates, interest has become focused on nonprimates, in particular the pig, as the most suitable organ donor species for humans. However, organ transplants across discordant species barriers are subject to vigorous immunologic rejection. 1-4 Transplantation of organs from pigs results in hyperacute rejection in primate recipients due to the presence of anti-Gal␣1-3Gal natural antibodies in their sera. These antibodies also mediate a delayed form of humoral rejection, acute vascular rejection, if hyperacute rejection is overcome. The cellular immune response to xenografts is also stronger than that to allografts. Thus, tolerance induction is likely to be essential for successful xenotransplantation.Induction of mixed hematopoietic chimerism by bone marrow transplantation (BMT) leads to stable donor-specific tolerance in allogeneic and closely related xenogeneic (rat-to-mouse) combinations, 5-10 but its ability to induce porcine xenograft tolerance has not been demonstrated in any discordant xenogeneic species because of the difficulty in achieving lasting porcine hematopoietic engraftment. Studies using a pig-primate combination have shown prolonged survival of porcine kidney grafts in cynomolgus monkey recipients preinfused with donor marrow cells. However, longlasting hematopoietic chimerism was not achieved in any of these animals, and all kidney grafts were eventually rejected. 11,12 Because donor hematopoietic stem cells may fail to engraft in discordant xenogeneic recipients, even in recipients in which T and B cells are absent, 13,14 the rejection of pig kidney grafts in these studies does not distinguish between the failure of donor hematopoietic cells to en...