PurposeA subset of primary prostate cancer (PCa) expresses programmed death-ligand 1 (PD-L1), but whether they have unique tumor immune microenvironment (TIME) or genomic features is unclear.Experimental DesignWe selected PD-L1-positive high-grade and/or high-risk primary PCa, characterized tumor-infiltrating lymphocytes (TILS) with multiplex immunofluorescence, and identified genomic alterations in immunogenic and non-immunogenic tumor foci.ResultsOne-quarter of aggressive localized PCa cases (29/115) had tumor PD-L1 expression >5%. This correlated with increased density of CD8+ T cells, a large fraction co-expressing PD-1, versus absent PD-1 expression on sparse CD8 T cells in unselected cases. Most CD8+PD-1+ cells did not express terminal exhaustion markers (TIM-3 or LAG-3), while a subset expressed TCF1. Consistent with these CD8+PD-1+TCF1+ cells being progenitors, they were found in antigen-presenting-cell niches in close proximity to MHC II+ cells. CD8 T cell density in immunogenic PCa and renal cell carcinoma (RCC) was nearly identical. Shallow RB1 and BRCA2 losses, and deep deletions of CHD1, were prevalent; the latter being strongly associated with a dendritic cell gene set in TCGA. Tumor mutation burden was variable; neither high microsatellite instability nor CDK12 alterations were present.ConclusionsA subset of localized PCa is immunogenic, manifested by PD-L1 expression and CD8+ T cell content comparable to RCC. The CD8+ T cells include effector cells and exhausted progenitor cells, which may be expanded by ICIs. Genomic losses of RB1, BRCA2, and CHD1 may be drivers of this phenotype. These findings indicate that immunotherapies may be effective in biomarker-selected subpopulations of localized PCa patients.Statement of Translational RelevanceProstate cancer (PCa) is generally considered poorly immunogenic, with low expression of programmed death-ligand 1 (PD-L1) and low density of tumor-infiltrating immune cells. Accordingly, response rates to PD(L)-1 inhibition in unselected patients with advanced prostate cancer have been low. Here, we find that a substantial subset of aggressive primary PCa exhibits tumor PD-L1 expression and contains a high density of tumor-infiltrating lymphocytes. These lymphocytes contain sub-populations of exhausted progenitor CD8+ T cells and differentiated effector T cells, the hallmarks of ongoing anti-tumor immune response and a prerequisite for response to checkpoint inhibition. Furthermore, we identify genomic alterations that may be contributing to immunogenicity in these cases. These findings point to immune responses elicited in a subset of primary PCa, supporting the development of immune checkpoint blockade clinical trials in early-stage disease, such as biochemically recurrent PCa, that are driven by genomic features of the tumor or the immune microenvironment.