Abstract:We previously reported that in multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord periplaques extend distance away from plaque borders and are characterized by the co-occurrence of partial demyelination, astrocytosis and low-grade inflammation. However, transcriptomic analyses comparing periplaques to adjacent normal-appearing white matter (NAWM) areas did not allow providing a comprehensive view of molecular events in astrocytes vs oligodendrocytes. Here, we re-assessed our transcriptomic data with the aim of identifying functionally-relevant co-expression networks that would reflect astrocyte vs oligodendrocyte molecular signatures in periplaques. We identified an astrocytosis-related gene module comprising GFAP, the hub gene CX43/GJA1 and a set of transcripts forming a TGFB/SMAD1/SMAD2 genomic signature. Partial demyelination was characterized by a co-expression network which, besides myelin genes, comprised a highly significant number of translation/elongation-related genes. Interestingly, the main oligodendrocyte-related hub we identified was NDRG1, a gene previously shown to be specifically silenced in the NAWM of MS patients. This result indicated that NDRG1 down-regulation could be an important event in the process of periplaque partial demyelination. To establish a putative link between NDRG1 down-regulation and a cytokine/chemokine signature, we then sought to identify cytokine/chemokine genes whose mRNA levels inversely correlated with those of NDRG1. Following this approach we found 5 candidate immune-related genes whose up-regulation associated with NDRG1 down-regulation: TGFB1, PDGFC, . From these results we propose that in the spinal cord of MS patients with progressive forms of the disease, TGFB1 may Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: