Recruitment of virus-infected T lymphocytes into the CNS is an essential step in the development of virus-associated neuroinflammatory diseases, notably myelopathy induced by retrovirus human T leukemia virus-1 (HTLV-1). We have recently shown the key role of collapsin response mediator protein 2 (CRMP2), a phosphoprotein involved in cytoskeleton rearrangement, in the control of human lymphocyte migration and in brain targeting in animal models of virus-induced neuroinflammation. Using lymphocytes cloned from infected patients and chronically infected T cells, we found that HTLV-1 affects CRMP2 activity, resulting in an increased migratory potential. Elevated CRMP2 expression accompanies a higher phosphorylation level of CRMP2 and its more pronounced adhesion to tubulin and actin. CRMP2 forms, a full length and a shorter, cleaved one, are also affected. Tax transfection and extinction strategies show the involvement of this viral protein in enhanced full-length and active CRMP2, resulting in prominent migratory rate. A role for other viral proteins in CRMP2 phosphorylation is suspected. Full-length CRMP2 confers a migratory advantage possibly by preempting the negative effect of short CRMP2 we observe on T lymphocyte migration. In addition, HTLV-1–induced migration seems, in part, supported by the ability of infected cell to increase the proteosomal degradation of short CRMP2. Finally, gene expression in CD69+ cells selected from patients suggests that HTLV-1 has the capacity to influence the CRMP2/PI3K/Akt axis thus to positively control cytoskeleton organization and lymphocyte migration. Our data provide an additional clue to understanding the infiltration of HTLV-1–infected lymphocytes into various tissues and suggest that the regulation of CRMP2 activity by virus infection is a novel aspect of neuroinflammation.