DNA topoisomerases control the topology of DNA (e.g. the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e. more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower than equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analysed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topo VI (which is only distantly related to the type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range ~2–9 kbp, and is not altered by reducing the free energy available from ATP hydrolysis by varying the ATP:ADP ratio. A direct test of one model (DNA tracking, i.e. sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect but that it is possible that other factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.