2020
DOI: 10.21203/rs.3.rs-49230/v2
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Ameliorate Airway Inflammation in a Rat Model of chronic obstructive pulmonary disease (COPD)

Abstract: Background: Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 73 publications
(87 reference statements)
0
1
0
Order By: Relevance
“…In another study, the therapeutic capacity of hUC-MSC-EVs versus hUC-MSCs on the treatment of chronic obstructive pulmonary disease (COPD) in a rat model was investigated. Both hUC-MSC-EVs and hUC-MSCs ameliorated peribronchial and perivascular inflammation and thus decreased alveolar septal thickening in the emphysematous lung of COPD by decreasing the synthesis of protein kinase C zeta and NF-κB subunits p50 and p65, which control several pathways associated with innate and adaptive immune response [151].…”
Section: Lung Diseasesmentioning
confidence: 99%
“…In another study, the therapeutic capacity of hUC-MSC-EVs versus hUC-MSCs on the treatment of chronic obstructive pulmonary disease (COPD) in a rat model was investigated. Both hUC-MSC-EVs and hUC-MSCs ameliorated peribronchial and perivascular inflammation and thus decreased alveolar septal thickening in the emphysematous lung of COPD by decreasing the synthesis of protein kinase C zeta and NF-κB subunits p50 and p65, which control several pathways associated with innate and adaptive immune response [151].…”
Section: Lung Diseasesmentioning
confidence: 99%