In recent studies, primary aldosteronism (PA) has been reported as the most common etiology for secondary hypertension of endocrine origin, accounting for approximately 10% of cases. In PA, excess aldosterone production can lead to deleterious effects at the cardiovascular (CV) and renal levels by activating mineralocorticoid receptors, which involves an increase in pro-inflammatory and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase–associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin superfamily, has been closely linked to CV and renal damage in several pathological conditions. Because NGAL can be detected in biofluids such as plasma and urine, it has been proposed as a damage biomarker for target tissues and has also been studied for its role in hypertension and associated with PA. NGAL is produced by many different cell types, can be carried on extracellular vesicles, and is modulated by microRNAs, which would support its use as a biomarker for endocrine hypertension due to PA. Over the last decade, studies have shown that NGAL is necessary for the development of aldosterone-induced hypertension and that is associated with end-organ damage. In addition, it has been proposed that some mechanisms are dependent on the activation of immune cells, such as dendritic cells and macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23) or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL. Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and Th2, resulting in CV and renal fibrosis due to the high aldosterone levels. Although the immune system has been closely associated with essential hypertension, its participation in endocrine hypertension has not been fully elucidated. This review discusses the link between NGAL and endocrine hypertension, particularly in the context of PA, and their possible regulators and mechanisms, with a focus on its role as an immunomodulator.