Somatosensation, the detection and transduction of external and internal stimuli, has fascinated scientists for centuries. But still, some of the mechanisms how distinct stimuli are detected and transduced are not entirely understood. Over the past decade major progress has increased our understanding in areas such as mechanotransduction or sensory neuron classification. Additionally, the accessibility to human pluripotent stem cells and the possibility to generate and study human sensory neurons has enriched the somatosensory research field.Based on our previous work, the generation of functional human mechanoreceptors, we describe here the generation of hESC-derived nociceptor-like cells. We show that by varying the differentiation strategy, we can produce different nociceptive subpopulations. One protocol in particular allowed the generation of a sensory neuron population, homogeneously expressing TRPV1, a prototypical marker for nociceptors. Accordingly, we find the cells to homogenously respond to capsaicin, to become sensitized upon inflammatory stimuli, and to respond to temperature stimulation. Surprisingly, all of the generated subtypes show mechano-nociceptive characteristics and, quite unexpectedly, loss of mechanotransduction in the absence of PIEZO2.