Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylationThis is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Stanton L. Gerson, Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, OH, USA, Tel: 1-216-844-8562, stanton.gerson@case.edu. Author Contributions: JK designed the study, performed research, data analysis, and wrote the manuscript. GN helped design the study, performed research, and data analysis. YQ assisted with study design and data analysis. GS-G and ED performed research and assisted in manuscript preparation. PF, SS, and XB assisted in study design and data analysis. DW assisted the study design and provided essential reagents. EA helped design the study and provided essential reagents. SLG helped design the study, assisted in manuscript preparation, and provided essential reagents.
Conflicts of Interest:The authors have no competing financial interests in relation to the work described in this manuscript.
HHS Public AccessAuthor manuscript Int J Stem Cell Res Ther. Author manuscript; available in PMC 2016 August 24.
Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34 + selected hematopoietic stem and progenitor cells.