Although humic acid has been demonstrated to improve the quality of some soil types, the long-term effects of humic acid on soil under continuous cropping peanut are not fully understood. This study aimed to investigate the continuous effects of humic acid on the physicochemical properties, microbial diversity, and enzyme activities of soil under continuous cropping peanut. In this study, a three-year consecutive experiment of cropping peanut was conducted in the North China Plain. In addition to the equal nitrogen, phosphorus, and potassium inputs, humic acid treatment was applied with inorganic fertilizers. Compared with control experiments, humic acid increased the yield and quality of continuous cropping peanut. To elucidate the mechanism of humic acid affecting the soil quality, various soil quality indicators were evaluated and compared in this study. It was found that humic acid increased soil nutrient contents, including the total soil nitrogen, total phosphorus, total potassium, available nitrogen, available phosphorus, available potassium, and organic matter contents, which exhibited the maximum effect in the third year. Meanwhile, the urease, sucrase, and phosphatase activities in the soil significantly increased after treated with humic acid, of which the maturity period increased most significantly. The same results were observed for three consecutive years. Microbial diversity varied considerably according to the high throughput sequencing analysis. Specifically, the number of bacteria decreased while that of fungi increased after humic acid treatment. The abundance of Firmicutes in bacteria, Basidiomycota, and Mortierellomycota in fungi all increased, which have been reported as being beneficial to plant growth. In contrast, the abundance of Ascomycota in fungi was reduced, and most of the related genera identified are pathogenic to plants. In conclusion, humic acid improved the yield and quality of continuous cropping peanut because of improved physicochemical properties, enzymatic activities, and microbial diversity of soil, which is beneficial for alleviating the obstacles of continuous cropping peanut.