Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis 2018
DOI: 10.18653/v1/w18-6225
|View full text |Cite
|
Sign up to set email alerts
|

HUMIR at IEST-2018: Lexicon-Sensitive and Left-Right Context-Sensitive BiLSTM for Implicit Emotion Recognition

Abstract: This paper describes the approaches used in HUMIR system for the WASSA-2018 shared task on the implicit emotion recognition. The objective of this task is to predict the emotion expressed by the target word that has been excluded from the given tweet. We suppose this task as a word sense disambiguation in which the target word is considered as a synthetic word that can express 6 emotions depending on the context. To predict the correct emotion, we propose a deep neural network model that uses two BiLSTM networ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 13 publications
0
2
0
2
Order By: Relevance
“…A few studies have been carried out in the implicit emotion analysis task [1,[27][28][29][30][31][32]. Due to the lack of emotion and context information, one of the research hotspots of emotion-related tasks is how to effectively introduce external knowledge to assist their proposed models in understanding emotions in the text [20,[33][34][35][36][37].…”
Section: Related Workmentioning
confidence: 99%
“…A few studies have been carried out in the implicit emotion analysis task [1,[27][28][29][30][31][32]. Due to the lack of emotion and context information, one of the research hotspots of emotion-related tasks is how to effectively introduce external knowledge to assist their proposed models in understanding emotions in the text [20,[33][34][35][36][37].…”
Section: Related Workmentioning
confidence: 99%
“…Bu veriseti 91309 yorum içermektedir [24]. Üçüncü verisetinde ise 10.000 olumlu 10.000 olumsuz metin yer almaktadır [25].…”
Section: Bulgular Ve Tartişmalarunclassified
“…Hisler karşılıklı konuşma esnasında ses tonu, jest ve mimiklerden belirgin şekilde fark edilebilirken yazılı iletişimde yazarın hangi hislerle metni yazdığını belirlemek çoğu zaman bir insan için dahi zordur. Çünkü metinler bağlama göre anlamı ve yansıttığı duygusu farklı olan ifadelerden oluşmaktadır (Naderalvojoud, Ucan ve Akcapinar Sezer, 2018). Bu kelime ve ifadelerin yansıttığı hisler belirlenebilirse cümlenin, paragrafın ve bunlara bağlı olarak metnin yansıttığı hisler oransal olarak bulunabilir.…”
Section: His Analizinin Tarihçesi Ve öNemiunclassified