Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The COVID-19 pandemic has ended, but SARS-CoV-2 continues to actively circulate and mutate in the human population. In this regard, it is important to understand for how long post-infectious and post-vaccination immunity may last and how effectively established immunity could act against new mutant SARS-CoV-2 strains. The aim was to study humoral and cellular immunity in a group of COVID-19 convalescent subjects within 3 years after the primary infection. The longitudinal study included 38 adults aged 23–72 years with PCR-confirmed mild or moderate COVID-19 in the second half of 2020. Within three-year follow-up after the onset, the subjects were examined every 6 months for the level of humoral and cellular immunity against SARS-CoV-2 antigens. The parameters of humoral immunity were assessed by enzyme immunoassay using “SARS-CoV-2-IgG quantitative-ELISA-BEST” kits (Vector-Best JSC, Novosibirsk, Russian Federation) for S-protein and “N-CoV-2-IgG PS” (Saint-Petersburg Pasteur Institute, St. Petersburg, Russian Federation) specific to the N-protein. Cellular anti-SARS-CoV-2 immunity was analyzed by evaluating surface CD107a expression on CD8high lymphocytes stimulated with the SARS-CoV-2 S- or N-antigens. It was shown that the dynamics of antibody levels against SARS-COV-2 antigens depends on antigen (S- or N-protein) type, antibody class (IgG or IgA) as well as individual contact history with new SARS-CoV-2 strains. The dynamics of cytotoxic CD8highCD107a+ lymphocyte percentage is moderately positively correlated with that of the corresponding anti-S or N antibody levels. At the same time, change in the levels of both humoral and T-cell responses to SARS-CoV-2 S- or N-protein antigens are weakly negatively correlated with each other. A strong positive correlation was found between changes in the anti-S IgG antibody level and avidity. Avoiding the anti-S IgG neutralization due to frequent mutations of new SARS-CoV-2 strains leads to induced new primary immune responses against SARS-CoV-2 antigens along with the activation of existing responses formed to previous coronavirus strains. The study of immune responses against SARS-CoV-2 antigens allows to predict the persistence of high SARS-CoV-2 anti-S antibody and T-cell response levels.
The COVID-19 pandemic has ended, but SARS-CoV-2 continues to actively circulate and mutate in the human population. In this regard, it is important to understand for how long post-infectious and post-vaccination immunity may last and how effectively established immunity could act against new mutant SARS-CoV-2 strains. The aim was to study humoral and cellular immunity in a group of COVID-19 convalescent subjects within 3 years after the primary infection. The longitudinal study included 38 adults aged 23–72 years with PCR-confirmed mild or moderate COVID-19 in the second half of 2020. Within three-year follow-up after the onset, the subjects were examined every 6 months for the level of humoral and cellular immunity against SARS-CoV-2 antigens. The parameters of humoral immunity were assessed by enzyme immunoassay using “SARS-CoV-2-IgG quantitative-ELISA-BEST” kits (Vector-Best JSC, Novosibirsk, Russian Federation) for S-protein and “N-CoV-2-IgG PS” (Saint-Petersburg Pasteur Institute, St. Petersburg, Russian Federation) specific to the N-protein. Cellular anti-SARS-CoV-2 immunity was analyzed by evaluating surface CD107a expression on CD8high lymphocytes stimulated with the SARS-CoV-2 S- or N-antigens. It was shown that the dynamics of antibody levels against SARS-COV-2 antigens depends on antigen (S- or N-protein) type, antibody class (IgG or IgA) as well as individual contact history with new SARS-CoV-2 strains. The dynamics of cytotoxic CD8highCD107a+ lymphocyte percentage is moderately positively correlated with that of the corresponding anti-S or N antibody levels. At the same time, change in the levels of both humoral and T-cell responses to SARS-CoV-2 S- or N-protein antigens are weakly negatively correlated with each other. A strong positive correlation was found between changes in the anti-S IgG antibody level and avidity. Avoiding the anti-S IgG neutralization due to frequent mutations of new SARS-CoV-2 strains leads to induced new primary immune responses against SARS-CoV-2 antigens along with the activation of existing responses formed to previous coronavirus strains. The study of immune responses against SARS-CoV-2 antigens allows to predict the persistence of high SARS-CoV-2 anti-S antibody and T-cell response levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.