Introduction: The aim of this study was to analyze biomarkers that might predict the severity and progression of the SARS-CoV-2 infection, both in the acute phase and after recovery. Methods: Unvaccinated patients infected with the original strain of COVID-19 requiring ward (Group 1, n = 48) or ICU (Group 2, n = 41) admission were included. At the time of admission (visit 1), a clinical history was acquired, and blood samples were obtained. One and six months after discharge from the hospital (visits 2 and 3, respectively), a clinical history, lung function tests, and blood samples were carried out. At visit 2, patients also underwent a chest CT scan. Different cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, G-CSF, GM-CSF, IFN-ɣ, MCP-1, MIP-1β, and TNF-α) and lung fibrosis biomarkers (YKL-40 and KL-6) were measured in blood samples obtained at visits 1, 2, and 3. Results: At visit 1, IL-4, IL-5, and IL-6 levels were higher in Group 2 (p = 0.039, 0.011, and 0.045, respectively), and IL-17 and IL-8 levels were higher in Group 1 (p = 0.026 and 0.001, respectively). The number of patients in Groups 1 and 2 who died during hospitalization was 8 and 11, respectively. YKL-40 and KL-6 levels were higher in patients who died. Serum YKL-40 and KL-6 levels determined at visit 2 correlated negatively with FVC (p = 0.022 and p = 0.024, respectively) and FEV1 (p = 0.012 and p = 0.032, respectively) measured at visit 3. KL-6 levels also correlated negatively with the diffusing capacity of the lungs for carbon monoxide (DLCO, p = 0.001). Conclusions: Patients who required ICU admission had higher levels of Th2 cytokines, while patients admitted to the ward showed an innate immune response activation, with IL-8 release and Th1/Th17 lymphocyte contribution. Increased levels of YKL-40 and KL-6 were associated with mortality in COVID-19 patients.