and hence, cannot be considered safe for raw consumption [3]. Partial cooking/steaming may not completely ensure its safety. A recent study from this laboratory has reported the occurrence of presumptive coliforms in freshly procured shelled sweet corn kernels from the market [4]. The major source of contamination is post-harvest shelling and further handling which results in its poor storage life. To address these issues, some studies have been performed earlier. These included film-over-wrap in tray and polyolefin stretch films [5]; shrink wrapping, refrigeration, and gamma irradiation (upto 1 kGy) [6]; and packaging in perforated packets, cold (4°C) acclimatization for 5 days followed by storage at-1°C [7]. The shelf life of kernels could not be extended beyond 20 days by these treatments. Some of these treatments even could not seem to be effective in ensuring inactivation of pathogens. The data from the USA (~ 713 produce-related outbreaks between 1990 and 2005) and the UK (~ 88 outbreaks between 1996 and 2006) have reported the involvement of fresh agri-produce in foodborne illnesses [8]. Recently, a combination process was developed in this laboratory. The process involved chlorination (NaOCl; 200 ppm, 5 min), blanching (60°C, 5 min), packaging in Low Density Polyethylene (LDPE) packets and gamma irradiation (5 kGy). The process could extend the shelf life of kernels up to 30 days at 4°C. Although chlorination has been recommended as a sanitization treatment for different food applications by US FDA, its direct application in food has not been approved in European countries such as the Netherlands, Sweden, Germany, and Belgium [9]. The prime reason for this is the safety concerns associated with possible formation of chlorinated compounds such as trihalomethanes, chloramines, haloketones, chloropicrins, and haloacetic acids, suspected to be potential carcinogens [10,11]. Hence, an utmost need was felt to improve the combination process by replacing chlorination with another physical sanitization treatment.