Precipitation is one of the most intrinsic resources for manifold industrial activities all over Western Australia; consequently, immaculate rainfall prediction is indispensable for flood mitigation as well as water resources management. This study investigated the performance of artificial neural networks (ANN) and Linear multiple regression (LMR) analysis to forecast long-term seasonal spring rainfall in Western Australia, using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential climatic phenomena. The ANN was developed in the form of multilayer perceptron using Levenberg–Marquardt algorithm and subsequently LMR was used with statistical significance for future spring rainfall forecast. The total climatic dataset has been divided into calibration and testing phases to determine the efficacy of the developed models. Different statistical skill tests such as root mean square error (RMSE), mean absolute error (MAE), and Willmott index of agreement ‘d’ were used to assess the efficacy of LMR and ANN modelling. In general, LMR has lower MAE and RMSE values as compared to ANN for most of the stations during calibration and testing periods, whereas ANN models performed better than LMR models based on ‘d’ values. The overall statistical analysis paradigm suggests the efficacy of LMR over ANN models for rainfall forecasting using more climatic variables. As a result, the developed LMR model, incorporated with lagged global climate indices, will facilitate the adequate preparedness for the risks associated with potential droughts in the study region.