Hurwitz moduli varieties parameterizing Galois covers of an algebraic curve
Vassil Kanev
Abstract:Given a smooth, projective curve \(Y\), a finite group \(G\) and a positive integer $n$ we study smooth, proper families \(X\to Y\times S\to S\) of Galois covers of \(Y\) with Galois group isomorphic to $G$ branched in \(n\) points, parameterized by algebraic varieties \(S\). When \(G\) is with trivial center we prove that the Hurwitz space \(H^G_n(Y)\) is a fine moduli variety for this moduli problem and construct explicitly the universal family. For arbitrary \(G\) we prove that \(H^G_n(Y)\) is a coarse modu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.