Cell migration is vital to many physiological and pathological processes including tissue development, repair, and regeneration, cancer metastasis, and inflammatory responses. Given the current interest in the role of mesenchymal stromal cells in mediating tissue repair, we are interested in quantifying the migratory capacity of these cells, and understanding how migratory capacity may be altered after damage. Optimization of a rigorously quantitative migration assay that is both easy to customize and cost-effective to perform is key to answering questions concerning alterations in cell migration in response to various stimuli. Current methods for quantifying cell migration, including scratch assays, trans-well migration assays (Boyden chambers), micropillar arrays, and cell exclusion zone assays, possess a range of limitations in reproducibility, customizability, quantification, and cost-effectiveness. Despite its prominent use, the scratch assay is confounded by issues with reproducibility related to damage of the cell microenvironment, impediments to cell migration, influence of neighboring senescent cells, and cell proliferation, as well as lack of rigorous quantification. The optimized scratch assay described here demonstrates robust outcomes, quantifiable and image-based analysis capabilities, cost-effectiveness, and adaptability to other applications.
Video LinkThe video component of this article can be found at