As an environmental parameter, the chlorophyll-a concentration (Chl-a) is essential for monitoring water quality and managing the marine ecosystem. However, current mainstream Chl-a inversion algorithms have limited accuracy and poor spatial and temporal generalization in Case II waters. In this study, we constructed a quantitative model for retrieving the spatial and temporal distribution of Chl-a in the Bohai–Yellow Sea area using Geostationary Ocean Color Imager (GOCI) spectral remote sensing reflectance (Rrsλ) products. Firstly, the GOCI Rrsλ correction model based on measured spectral data was proposed and evaluated. Then, the feature variables of the band combinations with the highest correlation with Chl-a were selected. Subsequently, Chl-a inversion models were developed using three empirical ocean color algorithms (OC4, OC5, and YOC) and four machine learning methods: BP neural network (BPNN), random forest (RF), AdaBoost, and support vector regression (SVR). The retrieval results showed that the machine learning methods were much more accurate than the empirical algorithms and that the RF model retrieved Chl-a with the best performance and the highest prediction accuracy, with a determination coefficient R2 of 0.916, a root mean square error (RMSE) of 0.212 mg·m−3, and a mean absolute percentage error (MAPE) of 14.27%. Finally, the Chl-a distribution in the Bohai–Yellow Sea using the selected RF model was derived and analyzed. Spatially, Chl-a was high in the Bohai Sea, including in Laizhou Bay, Bohai Bay, and Liaodong Bay, with a value higher than 4 mg·m−3. Chl-a in the Bohai Strait and northern Yellow Sea was relatively low, with a value of less than 3 mg·m−3. Temporally, the inversion results showed that Chl-a was considerably higher in winter and spring compared to autumn and summer. Diurnal variation retrieval effectively demonstrated GOCI’s potential as a capable tool for monitoring intraday changes in chlorophyll-a concentrations.