Hemophilia arthropathy (HA) represents the majority of morbidity in severe hemophilia patients, especially in resourcelimited countries. Adeno-associated virus (AAV)-mediated gene therapy is showing promise for managing hemophilia. However, patients with neutralizing antibodies (NAbs) against AAV, and inhibitors to clotting factors, are excluded from such therapy. This study explored the feasibility of AAV-mediated local gene therapy for HA. Factor VIII knockout (FVIII -/-) mice, with or without a FVIII inhibitor, were subjected to hemarthrosis induction and treated with either intravenous (IV) or intraarticular (IA) recombinant human factor VIII (rhFVIII). To investigate whether rhFVIII carried the risk to develop a FVIII inhibitor, FVIII -/mice were treated with three doses of IV or IA rhFVIII and inhibitor development was measured. In patients with established HA requiring synovial fluid aspiration, plasma, and synovial fluid were collected and measured for anti-AAV capsid IgG (serotypes 1-9 and 843) and NAbs for AAV843. IA rhFVIII provided better protection from synovitis compared with IV rhFVIII, with or without the FVIII inhibitor. While IV rhFVIII led to all FVIII -/mice developing an FVIII inhibitor (n = 31, median 4.9 Bethesda units [BU]/mL), only 50% of the mice developed a FVIII inhibitor by IA administration, and at a lower titer (median 0.55 BU/mL). In hemophilia patients, total anti-AAV IgG was lowest for AAV4 and AAV5, both in plasma and synovial fluid. Anti-AAV IgGs in synovial fluid for most samples were lower or similar to the plasma levels. These results show that direct IA rhFVIII administration yields better protection against bleeding-induced joint damage, even in the presence of an inhibitor antibody. IA rhFVIII delivery carried a lower risk of FVIII inhibitor formation compared with IV FVIII. The anti-AAV antibody level in synovial fluid was similar or lower than the plasma level, supporting the feasibility of local gene therapy for managing HA.