2019
DOI: 10.35940/ijrte.b1708.078219
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid ACO-PSO-GA-DE Algorithm for Big Data Classification

Abstract: This paper designs a technique to classify big data efficiently. This work considers the processing of big data as an optimization problem due to the trade-off between accuracy and time and solves this optimization problem by using a meta-heuristic approach. The HAPGD (Hybrid ACO (Ant Colony Optimization), PSO (Particle Swarm Optimization), GA (Genetic Algorithm), and DE (Differential Evolution)) classification algorithm is designed by using the support vector machine (SVM) along with hybrid ACO-PSO-GA-DE algo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?