Location is a key filter for mobile services, including navigation or advertising. However, positioning and localization inside buildings and in indoor spaces, where users spend most of their time and where the signals of the most widely-used positioning system, i.e. Global Navigation Satellite Systems such as GPS (Global Positioning System), are not available, can be challenging. In this regard, Wireless Local Area Networks (WLAN), e.g. Wi-Fi, can be used for positioning purposes by using a WLAN-enabled device, e.g. a smartphone, to measure and match the Received Signal Strength (RSS) of a signal broadcast by an access point. The challenges of this approach are that accurate maps of RSS are required, and that measuring RSS can be affected by many factors, including the dynamics of the environment and the orientation and type of a device. This paper provides a path-loss model to produce RSS maps automatically from floor plans and introduces an agent-based simulation approach to investigate different positioning methods. This provides a pathway to reduce the time and effort associated with WLAN positioning research.