Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Soil erosivity is a key indicator of the effectiveness of precipitation acting on the land’s surface and is mainly controlled by event-scale and seasonal weather and climatic factors but is also influenced by the nature of the land’s surface, including relief and vegetation cover. The aim of this study is to examine spatial and temporal variations in soil erosivity across southern Africa using rainfall data for the period 2000–2023 and a gridded raster spatial modelling approach. The two wettest and driest years in the record (±>1.5 standard deviation of rainfall values) were identified, which were 2000 and 2006, and 2003 and 2019, respectively. Monthly rainfall values in these extreme wet/dry years were then analyzed for four rainfall regions (arid, semiarid, subhumid, humid), identified according to their annual rainfall totals. These data were then used to calculate Precipitation Concentration Index (PCI) values as an expression of rainfall seasonality, and the modified Fournier index (MFI) was used to quantify rainfall erosivity. The results show that there are significant differences in erosivity between the different climate regions based on rainfall seasonality and also their distinctive environmental settings. In turn, these reflect the synoptic climatic conditions in these regions, their different precipitation sources, and rainfall totals. The results of this study show that calculated MFI values at the national scale, which is the approach taken in most previous studies, cannot effectively describe or account for erosivity values that characterize different climatic regions at the sub-national scale. Furthermore, the mismatch between PCI and MFI spatial patterns across the region highlights that, under semiarid, and highly seasonal rainfall regimes, episodic rainfall events interspersed with periods of dryness result in significant variability in erosivity values that are unaccounted for by rainfall totals or seasonality alone. In these environments, flash floods and wind erosion result in regional-scale soil erosion and land degradation, but these processes and outcomes are not clear when considering MFI values alone. Fully evaluating spatial and temporal patterns of erosivity in their climatic and environmental contexts, as developed in this study, has implications for sediment and carbon exports, as well as identifying the major regions in which land degradation is an environmental and agricultural issue.
Soil erosivity is a key indicator of the effectiveness of precipitation acting on the land’s surface and is mainly controlled by event-scale and seasonal weather and climatic factors but is also influenced by the nature of the land’s surface, including relief and vegetation cover. The aim of this study is to examine spatial and temporal variations in soil erosivity across southern Africa using rainfall data for the period 2000–2023 and a gridded raster spatial modelling approach. The two wettest and driest years in the record (±>1.5 standard deviation of rainfall values) were identified, which were 2000 and 2006, and 2003 and 2019, respectively. Monthly rainfall values in these extreme wet/dry years were then analyzed for four rainfall regions (arid, semiarid, subhumid, humid), identified according to their annual rainfall totals. These data were then used to calculate Precipitation Concentration Index (PCI) values as an expression of rainfall seasonality, and the modified Fournier index (MFI) was used to quantify rainfall erosivity. The results show that there are significant differences in erosivity between the different climate regions based on rainfall seasonality and also their distinctive environmental settings. In turn, these reflect the synoptic climatic conditions in these regions, their different precipitation sources, and rainfall totals. The results of this study show that calculated MFI values at the national scale, which is the approach taken in most previous studies, cannot effectively describe or account for erosivity values that characterize different climatic regions at the sub-national scale. Furthermore, the mismatch between PCI and MFI spatial patterns across the region highlights that, under semiarid, and highly seasonal rainfall regimes, episodic rainfall events interspersed with periods of dryness result in significant variability in erosivity values that are unaccounted for by rainfall totals or seasonality alone. In these environments, flash floods and wind erosion result in regional-scale soil erosion and land degradation, but these processes and outcomes are not clear when considering MFI values alone. Fully evaluating spatial and temporal patterns of erosivity in their climatic and environmental contexts, as developed in this study, has implications for sediment and carbon exports, as well as identifying the major regions in which land degradation is an environmental and agricultural issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.