“…Over the previous few decades, to rise above the requirement of derivative information, a variety of nature inspired algorithms and their hybridized/embedded versions have been developed, for example, differential evolution (DE) (Das & Suganthan, 2010; Hamza, Abderazek, Lakhdar, Ferhat, & Yıldız, 2018; Kiani & Yildiz, 2016; Pholdee, Bureerat, & Yıldız, 2017; Yildiz, 2013; Zhang, Luo, & Wang, 2008), genetic algorithms (GA) (Karen, Yildiz, Kaya, Öztürk, & Öztürk, 2006; Kiani & Yildiz, 2016), particle swarm optimization (PSO)(Eberhart & Kennedy, 1995; Shi & Eberhart, 1998; Sun, Feng, & Xu, 2004; Xu & Sun, 2005; dos Santos Coelho, 2010; Kiani & Yildiz, 2016; Yildiz et al, 2019, Kumar et al, 2020a,b), gravitational search algorithm (GSA) (Karagöz & Yıldız, 2017; Rashedi, Nezamabadi‐Pour, & Saryazdi, 2009), grey wolf optimization (GWO) (Mirjalili, Mirjalili, & Lewis, 2014; Yildiz & Yildiz, 2018; Yildiz et al, 2019; Abderazek, Yildiz, & Mirjalili, 2020), harmony search (HS) (Yildiz & Öztürk, 2010), ant lion optimizer (ALO) (Mirjalili, 2015a; Yildiz et al, 2019; Abderazek et al, 2020), moth flame optimization algorithm (Mirjalili, 2015b, Yıldız & Yıldız, 2017; Yildiz et al, 2019; Abderazek et al, 2020; Yıldız, 2020a), multi verse optimizer (Abderazek et al, 2020), salp swarm algorithm (Yıldız & Yıldız, 2019; Yildiz et al, 2019; Abderazek et al, 2020), mine blast algorithm (Yildiz et al, 2019; Abderazek et al, 2020; Yıldız, 2020c), harris hawks optimization algorithm (Yıldız et al, 2019; Yıldız & Yıldız, 2019; Kurtuluş, Yıldız, Sait, & Bureerat, 2020), butterfly optimization algorithm (Yıldız et al, 2020a), henry gas solubility optimization algorithm (Yıldız et al, 2020b), grasshopper optimization algorithm (Mirjalili, Mirjalili, Saremi, Faris, & Aljarah, 2018; Yıldız & Yıldız, 2019), dragonfly algorithm (Yıldız & Yıldız, 2019), artificial bee colony algorithm (Yildiz et al, 2019), whale optimization algorithm (Yildiz & Yildiz, 2018; Yildiz et al, 2019; Yildiz,…”