Recent studies have shown that low-resolution analog-to-digital-converters and digital-to-analog-converters (ADCs and DACs) can make fully-digital beamforming more power efficient than its analog or hybrid beamforming counterpart over wide-band millimeter-wave (mmWave) channels. Inspired by this, we propose a computationally efficient fully-digital beamformer relying on low-resolution ADCs/DACs for multi-user mmWave communication networks. Both a generalized (unstructured) beamformer (GB) and a structured zero-forcing beamformer (ZFB) are proposed. For maintaining fairness among all users in the network, specifically tailored objective functions are considered under sumpower constraints, namely that of maximizing the geometric mean (GM) of users' rate and their max-min rate. These computationally challenging beamforming design problems are tackled by developing computationally efficient steep ascent algorithms, which have the radical benefit of relying on a closed-form solution at each iteration. Moreover, to facilitate the employment of low-cost amplifiers at each antenna, the GB design problem subject to the equal-gain transmission constraint is considered, which assigns equal transmit power to each transmit antenna. The proposed algorithms promise a user-rate distribution having a reduced deviation among the user-rates, i.e., improved rate-fairness. Our extensive simulation results show an approximately upto 45% reduction for the GM-rate of a 2-bit ADC (4-bin quantization) compared to the ∞-resolution ADC.