Recent advances in single cell transcriptomics have allowed us to examine the identify of each single cell, thus have led to discovery of new cell types and provide a high resolution map of cell type composition in tissues. Technologies which can measure another type of data of a single cell in addition to the gene-expression data provide a more comprehensive picture of a cell, and meanwhile pose challenges for data integration tasks. We consider the spatial location of cells, which is an important feature of cells, combined with the cells’ gene-expression profiles, to determine the cell type identity. We aim to jointly classify cells based on their locations relative to other cells in the system as well as their gene expression profiles. We have developed scHybridNMF (single-cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by incorporating single cell gene expression data with cell location data. We combined two classical methods, nonnegative matrix factorization with a k-means clustering scheme, to respectively represent high-dimensional gene expression data and low-dimensional location data together. Our method incorporates a novel cell location term to the gene expression clustering. We show that scHybridNMF can make use of the location data to improve cell type clustering. In particular, we show that under multiple scenarios, including that when the number of genes profiled is low, and when the location data is noisy, scHybridNMF outperforms the standalone algorithms NMF and k-means, and an existing method HMRF which also uses cell location and gene-expression data for cell type identification.