2021
DOI: 10.1007/s10489-021-02696-6
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
43
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 105 publications
(45 citation statements)
references
References 48 publications
0
43
0
2
Order By: Relevance
“…As can be seen from Table 5 , works [ 40 , 44 , 45 , 51 , 52 , 55 57 , 60 , 61 ] and [ 62 ] were used deep learning to achieve high classification ability on the used dataset. Using deep learning techniques Fu et al [ 56 ] attained 99.93% classification accuracy using the attention mechanism.…”
Section: Discussionmentioning
confidence: 99%
“…As can be seen from Table 5 , works [ 40 , 44 , 45 , 51 , 52 , 55 57 , 60 , 61 ] and [ 62 ] were used deep learning to achieve high classification ability on the used dataset. Using deep learning techniques Fu et al [ 56 ] attained 99.93% classification accuracy using the attention mechanism.…”
Section: Discussionmentioning
confidence: 99%
“…In the current benchmark for MI classification using PTB diagnostic, ConvNetQuake neural network model was adapted to achieve an accuracy of 99.44%. Similarly, heavy pre-processing, such as wavelet transformation [52], data balancing [53], and transfer learning [18], are used in the literature to achieve higher accuracy for ECG signal classification. In our study, no pre-processing of the individual readings was applied, and the model achieving 99.66% accuracy, exceeded the state-of-the-art accuracy for normal versus abnormal classification, which was previously 99.43%.…”
Section: B Ptb Diagnosticsmentioning
confidence: 99%
“…Surgen también la combinación entre dos ADL, es decir, la creación de modelos híbridos. Tal es el caso de (Chen et al, 2020;Ma et al, 2020;Rai and Chatterjee, 2021) con RNC+MCP y (Zihlmann et al, 2017;Limam and Precioso, 2017;Van Zaen et al, 2019;Sigurthorsdottir et al, 2020) quienes utilizaron las CNN+RNR. Cada uno de los aportes descritos previamente, en conjunto, tienen algo en común: la arquitectura o los hiperparámetros necesarios para el correcto funcionamiento y la obtención de los resultados publicados; fueron seleccionados de manera artesanal.…”
Section: Antecedentes Y Trabajo Relacionadounclassified