Vanadium (~450 nm) and V2O5 (~350 nm) were deposited by DC magnetron sputtering on an AM60 substrate to improve its degradation resistance in marine ambience. According to Raman and XPS analysis, the vanadium nanofilm mainly consists of amorphous V2O3, while V2O5 comprises two sheets of VO5 and VO4 units. After 30 days of immersion of the coated AM60 in a marine model solution (SME), the shift of the pH of the SME to more alkaline values was less pronounced for V2O5-AM60 because of the HCl acid formation during the partial dissolution of V2O5 in the presence of NaCl, and thus, a higher concentration of Mg2+ ions ~100 mg L-1 was released from the Mg (AM60) matrix. The lower concentration of ~40 mg L-1 from the V-AM60 surface was attributed to the possible intercalation of the released Mg ions (cations) into the conductive tunnels of V2O3 as the main component of the vanadium sputtered deposit. This oxide has been reported as a material for high-capacitive energy storage. In this way, the V-deposit provided longer partial protection for the AM60 surface (Mg matrix) from localized pitting attacks.