Purpose
The purpose of this study is to develop jute-glass hybrid fibre reinforced polyester-based bio-composites using an indigenously developed pultrusion set-up and to present a detailed discussion on their mechanical characterization.
Design/methodology/approach
The work was carried out to observe the hybridization effect of natural and synthetic fibres in combination with hybrid fillers loading mainly on strength and other properties. The used hybrid fillers were a combination of 9 Wt.% of carbon black%, 6 Wt.% of eggshell ash powder and 6 Wt.% of coconut coir ash powder. A lab-based developed pultrusion set-up was used to develop these hybrid GJFRP composites of 1,500 mm length. The developed composites were tested for tensile strength, compressive strength and impact strength.
Findings
The maximum tensile, compressive and impact strength obtained are 88.37 MPa, 56.13 MPa and 731.91 J/m from 9 Wt.%, 9 Wt.% and 0 Wt.% of hybrid fillers loading, respectively. Breaking energy was found maximum as 7.31 J in hybrid glass-jute hybrid fibre reinforced plastic composites with no filler loading and it was observed that filler loading was decreasing the impact strength of developed hybrid composites. Shrinkage and its variations in the diameter of the finally developed cylindrical shape composites were observed after cooling and solidification. Scanning electron microscopy was used to observe the internal cracks, bonding of fibres and resin, voids, etc.
Originality/value
Development of hybrid filler based novel eco-friendly bio-composites and its experimental investigation on the impact strength, tensile strength and compressive strength has not been attempted yet.