In recent years, the agricultural sector has turned to robotic automation to deal with the growing demand for food. Harvesting fruits and vegetables is the most labor-intensive and time-consuming among the main agricultural tasks. However, seasonal labor shortage of experienced workers results in low efficiency of harvesting, food losses, and quality deterioration. Therefore, research efforts focus on the automation of manual harvesting operations. Robotic manipulation of delicate products in unstructured environments is challenging. The development of suitable end effectors that meet manipulation requirements is necessary. To that end, this work reviews the state-of-the-art robotic end effectors for harvesting applications. Detachment methods, types of end effectors, and additional sensors are discussed. Performance measures are included to evaluate technologies and determine optimal end effectors for specific crops. Challenges and potential future trends of end effectors in agricultural robotic systems are reported. Research has shown that contact-grasping grippers for fruit holding are the most common type of end effectors. Furthermore, most research is concerned with tomato, apple, and sweet pepper harvesting applications. This work can be used as a guide for up-to-date technology for the selection of suitable end effectors for harvesting robots.