2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) 2016
DOI: 10.1109/icaccct.2016.7831691
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid data mining algorithm in cloud computing using MapReduce framework

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2018
2018
2018
2018

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 3 publications
0
1
0
2
Order By: Relevance
“…Eğer bir öğe kümesi yaygınsa ve bu öğe kümesinin yaygın bir üst kümesi yoksa, maksimal olarak isimlendirilir. Bulut ortamında da kapalı örüntü [52] ve maksimal örüntü [53] kavramları uygulayan çalışmalar bulunmaktadır.…”
Section: Bulut Bilişimde Kümeleme Yöntemiunclassified
See 1 more Smart Citation
“…Eğer bir öğe kümesi yaygınsa ve bu öğe kümesinin yaygın bir üst kümesi yoksa, maksimal olarak isimlendirilir. Bulut ortamında da kapalı örüntü [52] ve maksimal örüntü [53] kavramları uygulayan çalışmalar bulunmaktadır.…”
Section: Bulut Bilişimde Kümeleme Yöntemiunclassified
“…Diğer veri madenciliği yöntemlerinin bulut üzerinde uygulanmasında olduğu gibi, birliktelik kuralları analizinde de Hadoop ve MapReduce sistemleri oldukça sık kullanılmaktadır [42], [46]- [48], [51]- [53].…”
Section: Bulut Bilişimde Kümeleme Yöntemiunclassified
“…Hybrid approaches combine efficient parts of certain algorithms into new wholes, enhancing the accuracy and the efficiency of these algorithms, or producing novel algorithms. In literature, there are many successful hybrid data-mining approaches: Kumar et al implemented a highly accurate optimization algorithm from the combination of a genetic algorithm with fuzzy logic and ANN [42]; Singhal and Ashraf implemented a high-performance classification algorithm from the combination of a decision tree and a genetic algorithm [43]; Hassan and Verma collected successful highaccuracy hybrid data-mining applications for the medical domain in their study [44]; amilselvan and Sathiaseelan reviewed hybrid data-mining algorithms for image classification [45]; Athiyaman et al implemented a high-accuracy approach combination of association rule mining algorithms and clustering algorithms for meteorological datasets [46]; Sahay et al proposed a high-performance hybrid data-mining approach combining apriori and K-means algorithms for cloud computing [47]; Yu et al obtained a novel solution selection strategy using hybrid clustering algorithms [48]; Sitek and Wikarek implemented a hybrid framework for solving optimization problems and constraint satisfaction by using constraint logic programming, constraint programming, and mathematical programming [49]; Abdel-Maksoud et al proposed a hybrid clustering technique combining K-means and fuzzy C-means algorithms to detect brain tumours with high accuracy and performance [50]; Zhu et al implemented a novel high-performance hybrid approach containing hierarchical clustering algorithms for the structure of wireless networks [51]; Rahman and Islam combined K-means and a genetic algorithm to obtain a novel high-performance genetic algorithm [52]; and Jagtap proposed a high-accuracy technique to diagnose heart disease by combining Naïve Bayes, Multilayer Perceptron, C4.5 as a decision tree algorithm, and linear regression [53]. What we can infer from a detailed examination of these studies is that K-means and genetic algorithms, and their variants, can be adapted to other algorithms to implement a hybrid approach successfully.…”
Section: Related Workmentioning
confidence: 99%