2020
DOI: 10.48550/arxiv.2007.14994
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification

Abstract: Diabetic Retinopathy (DR) is one of the microvascular complications of Diabetes Mellitus, which remains as one of the leading causes of blindness worldwide. Computational models based on Convolutional Neural Networks represent the state of the art for the automatic detection of DR using eye fundus images. Most of the current work address this problem as a binary classification task. However, including the grade estimation and quantification of predictions uncertainty can potentially increase the robustness of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 1 publication
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?