In a highly sensitivity oil and gas upstream conditions, there is a need for a real-time interaction platform to cope with harsh environment. The oil and gas business faces data validity constraints in terms of reliability, accuracy, and repeatability to name a few. The Internet of Sensors (IoS), with appropriate utilization, will play a major role in the industry's digital transformation.
Predetermined IoS platforms with applicable characteristics are functioning in critical oil and gas environment applications. For example, some oil and gas wells produces harmful gases, like hydrogen sulfide (H2S). Fiber-optic sensors can be used as a leak detection tool for H2S resistance to inform oil and gas curfew if harmful gas is detected at the well site using cloud computing. Scale and corrosion monitoring of external pipelines is one of the integrity challenges. Ultrasonic sensors are embedding for real-time scale thickness feedback and corrosion monitoring by utilizing wireless transmission directly to end-user devices.
A paradigm shift is happening with the IoS applications in oil and gas operations for sensitivity, reliability, and accuracy that will add intelligence, smart decisions, and control to the operational landscape. A comprehensive review of the art in oil and gas IoS presented in this paper. The target is to evaluate state-of-the-art IoS platforms for hazardous environments such as oil and gas facilities in terms of type of sensors used, applicability, functionalities, linearity, and accuracy, type of output signals, outputs range, and materials used. This work establishes classification and comparison of the IoS for better data collection, communication, connectivity, observation, and reporting in the world of oil and gas sensors. The IoS platforms classified and compared in tables consisting of different characteristics for the best-suited IoS platform designs in oil and gas appliance applications. This will provide references for IoS design engineers.