Hybrid Distributed Optimization for Learning Over Networks With Heterogeneous Agents
Mohammad H. Nassralla,
Naeem Akl,
Zaher Dawy
Abstract:This paper considers distributed optimization for learning problems over networks with heterogeneous agents having different computational capabilities. The heterogeneity of computational capabilities implies that a subset of the agents may run computationally-intensive learning algorithms like Newton's method or full gradient descent, while the other agents can only run lower-complexity algorithms like stochastic gradient descent. This leads to opportunities for designing hybrid distributed optimization algor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.