2023
DOI: 10.1007/s11222-023-10325-0
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid elicitation and quantile-parametrized likelihood

Dmytro Perepolkin,
Benjamin Goodrich,
Ullrika Sahlin

Abstract: This paper extends the application of quantile-based Bayesian inference to probability distributions defined in terms of quantiles of observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and parameter interpretability, making them useful for eliciting information about observables. To encode uncertainty in the quantiles elicited from experts, we propose a Bayesian model based on the metalog distribution and a variant of the Dirichlet prior. We discuss the resu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 35 publications
0
0
0
Order By: Relevance