Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Treatment of periprosthetic femur fractures after total hip arthroplasty remains a major challenge in orthopedic surgery. Recently, a novel surgical technique using intraprosthetic screw fixation has been suggested. The purpose of this study was to evaluate the influence of drilling the femoral hip stem on integrity and strength of the implant. The hypothesis was that intraprosthetic drilling and screw fixation would not cause the load limit of the prosthesis to be exceeded and that deformation would remain within the elastic limit. A sawbone model with a conventional straight hip stem was used and a Vancouver C periprosthetic fracture was created. The fracture was fixed with a nine-hole less invasive stabilization system plate with two screws drilled and inserted through the femoral hip stem. Three different finite element models were created using ANSYS software. The models increased in complexity including joint forces and stress risers from three different dimensions. A variation of drilling positions was analyzed. Due to the complexity of the physiological conditions in the human femur, the most complex finite element model provided the most realistic results. Overall, significant changes in the stresses to the prosthesis caused by the drilling procedure were observed. While the stresses at the site of the bore hole decreased, the load increased in the surrounding stem material. This effect is more pronounced and further the holes were apart, and it was found that increasing the number of holes could counteract this. The maximum load was still found to be in the area of the prosthesis neck. No stresses above the load limit of titanium alloy were detected. All deformations of the prosthesis stem remained in the elastic range. These results may indicate a potential role for intraprosthetic screw fixation in the future treatment of periprosthetic femur fractures.
Treatment of periprosthetic femur fractures after total hip arthroplasty remains a major challenge in orthopedic surgery. Recently, a novel surgical technique using intraprosthetic screw fixation has been suggested. The purpose of this study was to evaluate the influence of drilling the femoral hip stem on integrity and strength of the implant. The hypothesis was that intraprosthetic drilling and screw fixation would not cause the load limit of the prosthesis to be exceeded and that deformation would remain within the elastic limit. A sawbone model with a conventional straight hip stem was used and a Vancouver C periprosthetic fracture was created. The fracture was fixed with a nine-hole less invasive stabilization system plate with two screws drilled and inserted through the femoral hip stem. Three different finite element models were created using ANSYS software. The models increased in complexity including joint forces and stress risers from three different dimensions. A variation of drilling positions was analyzed. Due to the complexity of the physiological conditions in the human femur, the most complex finite element model provided the most realistic results. Overall, significant changes in the stresses to the prosthesis caused by the drilling procedure were observed. While the stresses at the site of the bore hole decreased, the load increased in the surrounding stem material. This effect is more pronounced and further the holes were apart, and it was found that increasing the number of holes could counteract this. The maximum load was still found to be in the area of the prosthesis neck. No stresses above the load limit of titanium alloy were detected. All deformations of the prosthesis stem remained in the elastic range. These results may indicate a potential role for intraprosthetic screw fixation in the future treatment of periprosthetic femur fractures.
Peri-prosthetic fractures are an increasingly common phenomenon. They are associated with a high mortality, morbidity and economic burden. We reviewed the literature and look at historical aspects, risk factors, clinical assessment, classification and management of peri-prosthetic fractures around the hip. This article is intended to provide an overview to enable safe initial management of peri-prosthetic fractures and insight into definitive treatment.
It is unclear whether there is a limit to the amount of distal bone required to support fixation of supracondylar periprosthetic femoral fractures. This retrospective multicentre study evaluated lateral locked plating of periprosthetic supracondylar femoral fractures and compared the results according to extension of the fracture distal with the proximal border of the femoral prosthetic component. Between 1999 and 2008, 89 patients underwent lateral locked plating of a supracondylar periprosthetic femoral fracture, of whom 61 patients with a mean age of 72 years (42 to 96) comprising 53 women, were available after a minimum follow-up of six months or until fracture healing. Patients were grouped into those with fractures located proximally (28) and those with fractures that extended distal to the proximal border of the femoral component (33). Delayed healing and nonunion occurred respectively in five (18%) and three (11%) of more proximal fractures, and in two (6%) and five (15%) of the fractures with distal extension (p = 0.23 for delayed healing; p = 0.72 for nonunion, Fisher's exact test). Four construct failures (14%) occurred in more proximal fractures, and three (9%) in fractures with distal extension (p = 0.51). Of the two deep infections that occurred in each group, one resolved after surgical debridement and antibiotics, and one progressed to a nonunion. Extreme distal periprosthetic supracondylar fractures of the femur are not a contra-indication to lateral locked plating. These fractures can be managed with internal fixation, with predictable results, similar to those seen in more proximal fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.