SUMMARY
Lithofacies is one of the most important reservoir parameters, which could provide a qualitative description for hydrocarbon and geothermal reservoirs. Various techniques, such as artificial neural networks (ANN) and hidden Markov models (HMM), have been applied to extract this information, with the well log suites as inputs. However, both of these methods have their own limitations, such as no geological priors in ANN, since log samples along the depth direction are treated independently. While in HMM, a simple Gaussian assumption is usually adopted, which may not be sufficient for complex data distributions. In order to address these problems, a new method is proposed, which combines ANN and HMM into a hybrid system. This new technique allows for a more flexible approach to the probability distributions of rock properties, without any Gaussian assumption being made. At the same time, the geological dependence between adjacent samples is introduced by a representative transition matrix of lithofacies. The output probability from ANN must be reformulated to an emission function before it can be fed into the HMM, which is achieved via the Bayes’ rule. Then the Viterbi algorithm in HMM is applied for the decoding of sequential patterns in the subsurface. In this fashion, the classification process can be proceeded statistically and geologically. Better performance of the proposed approach, compared with other classification methods, is demonstrated in two case studies.