2021
DOI: 10.1155/2021/6638436
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Improved Bird Swarm Algorithm with Extreme Learning Machine for Short‐Term Power Prediction in Photovoltaic Power Generation System

Abstract: When a photovoltaic (PV) system is connected to the electric power grid, the power system reliability may be exposed to a threat due to its inherent randomness and volatility. Consequently, predicting PV power generation becomes necessary for reasonable power distribution scheduling. A hybrid model based on an improved bird swarm algorithm (IBSA) with extreme learning machine (ELM) algorithm, i.e., IBSAELM, was developed in this study for better prediction of the short-term PV output power. The IBSA model was … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 52 publications
0
0
0
Order By: Relevance