Incorporating renewable Distributed Energy Resources (DER) into the main grid is crucial for achieving a sustainable transition from fossil fuels. However, this generation system is complicated by the fluctuating behavior of renewable resources and the variable load demand, making it less reliable without a suitable energy storage system (ESS). This study proposes an Optimal Power Flow Management (OPFM) strategy for a grid-connected hybrid Micro Grid (MG) comprising a wind turbine (WT), a photovoltaic (PV) field, a storage battery, and a Micro Gas turbine (MGT). This proposed strategy includes (i) minimizing the MG’s daily energy cost, (ii) decreasing CO2 emissions by considering the variable load, weather forecast, and main grid fees to optimize the battery charging/discharging strategy, and (iii) optimizing the decision-making process for power purchase/sell from/to the main grid. The suggested OPFM approach is implemented using a Genetic Algorithm and compared with the Bellman Algorithm and a restricted management system via several simulations under the Matlab environment. Furthermore, the hybridization of the Bellman Algorithm and the Genetic Algorithm is proposed to enhance the OPFMC strategy’s efficiency by leveraging both algorithms’ strengths. The simulation results demonstrate the effectiveness of the proposed strategy in lowering energy costs and CO2 emissions and enhancing reliability. Additionally, the comparison of the hybridized GA algorithm reveals a cost 16% higher than the Bellman Algorithm; however, the use of the hybridized GA algorithm leads to a reduction in GHG emissions by 31.4%. These findings underscore the trade-off between cost and environmental impact in the context of algorithmic optimization for microgrid energy management.