2023
DOI: 10.3390/en16134849
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection

Abstract: Advanced production methods utilize complex fluid iteration mechanisms to provide benefits in their implementation. However, modeling these effects with efficiency or accuracy is always a challenge. Machine Learning (ML) applications, which are fundamentally data-driven, can play a crucial role in this context. Therefore, in this study, we applied a Hybrid Machine Learning (HML) solution to predict petrophysical behaviors during Engineered Water Injection (EWI). This hybrid approach utilizes K-Means and Artifi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?