Hybrid Malware Variant Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers
Asma A. Alhashmi,
Abdulbasit A. Darem,
Sultan M. Alanazi
et al.
Abstract:In an era marked by escalating cybersecurity threats, our study addresses the challenge of malware variant detection, a significant concern for a multitude of sectors including petroleum and mining organizations. This paper presents an innovative Application Programmable Interface (API)-based hybrid model designed to enhance the detection performance of malware variants. This model integrates eXtreme Gradient Boosting (XGBoost) and an Artificial Neural Network (ANN) classifier, offering a potent response to th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.