An efficient time domain hybrid method, consisting of the finite-difference time-domain (FDTD) method, Norton's theorem, transmission line (TL) equations, and some interpolation techniques, is presented to realize the fast coupling simulation of branched lines (BLs) radiated by ambient wave. Firstly, the branched lines are decomposed into multiple independent multi-conductor transmission lines (MTLs) according to the branched nodes. Then the TL equations with interpolation techniques are employed to build the coupling model of each MTL. The transient responses on these MTLs are solved by the FDTD method, which are employed to extract the Norton circuits of these MTLs acting on the branched nodes according to the Norton's theorem. Finally, the correlation matrix of the voltages and currents at the ports of the branched nodes is derived and solved. Meanwhile, these voltages are fed back to the corresponding MTLs as boundaries to realize the interference signal transmission among the BLs. Numerical examples about the coupling of branched lines contributed by five wires in free space and complex environment are simulated and compared with that of traditional FDTD to verify the correctness and efficiency of this proposed method.