2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS) 2017
DOI: 10.1109/csitss.2017.8447799
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Methods for Class Imbalance Learning Employing Bagging with Sampling Techniques

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 38 publications
(15 citation statements)
references
References 25 publications
0
14
0
1
Order By: Relevance
“…Some other related works based on ensemble classification and sampling methods also contribute to resolving imbalanced classification. For example, Ahmed [ 68 ] applied hybrid sampling in the RSYNBagging classifier, which considered the diversification of imbalanced data. Additionally, the ADASYNBagging algorithm [ 69 ] was coined by incorporating an algorithm and over-sampling.…”
Section: Ensemble Approaches For Imbalanced Classificationmentioning
confidence: 99%
“…Some other related works based on ensemble classification and sampling methods also contribute to resolving imbalanced classification. For example, Ahmed [ 68 ] applied hybrid sampling in the RSYNBagging classifier, which considered the diversification of imbalanced data. Additionally, the ADASYNBagging algorithm [ 69 ] was coined by incorporating an algorithm and over-sampling.…”
Section: Ensemble Approaches For Imbalanced Classificationmentioning
confidence: 99%
“…When this occurs, a large number of majority cases will be misclassified. However, despite these drawbacks, RUS generally works better than other under-sampling methods [11].…”
Section: Random Under-samplingmentioning
confidence: 98%
“…Dalam perkembangannya, metode klasifikasi sudah sampai di mana terdapat teknik yang menggabungkan lebih dari satu metode klasifikasi untuk membentuk sebuah algoritme klasifikasi yang lebih kuat. Teknik tersebut adalah ensemble method, ensemble method mengombinasikan lebih dari satu metode klasifikasi dasar dengan tujuan menghasilkan sebuah model yang lebih akurat dibanding dengan metode klasifikasi secara individu [19]. Terdapat beberapa model ensemble method yang popular digunakan pada penelitian-penelitian terkait klasifikasi di antaranya, Stacking, Bagging (Bootstrap Aggregation), dan Boosting.…”
Section: Klasifikasiunclassified