Monitoring tool wear is key for the optimization of manufacturing processes. To achieve this, machine learning (ML) has provided mechanisms that work adequately on setups that measure the cutting force of a tool through the use of force sensors. However, given the increased focus on sustainability, i.e., in the context of reducing complexity, time and energy consumption required to train ML algorithms on large datasets dictate the use of smaller samples for training. Herein, the concepts of active learning (AL) and transfer learning (TL) are simultaneously studied concerning their ability to meet the aforementioned objective. A method is presented which utilizes AL for training ML models with less data and then it utilizes TL to further reduce the need for training data when ML models are transferred from one industrial case to another. The method is tested and verified upon an industrially relevant scenario to estimate the tool wear during the turning process of two manufacturing companies. The results indicated that through the application of the AL and TL methodologies, in both companies, it was possible to achieve high accuracy during the training of the final model (1 and 0.93 for manufacturing companies B and A, respectively). Additionally, reproducibility of the results has been tested to strengthen the outcomes of this study, resulting in a small standard deviation of 0.031 in the performance metrics used to evaluate the models. Thus, the novelty presented in this paper is the presentation of a straightforward approach to apply AL and TL in the context of tool wear classification to reduce the dependency on large amounts of high-quality data. The results show that the synergetic combination of AL with TL can reduce the need for data required for training ML models for tool wear prediction.