Source localization, such as detecting a nuclear source in an urban area or ascertaining the origin of a chemical plume, is generally regarded as a well-documented inverse problem; however, optimally placing sensors to collect data for such problems is a more challenging task. In particular, optimal sensor placement-that is, measurement locations resulting in the least uncertainty in the estimated source parameters-depends on the location of the source, which is typically unknown a priori. Mobile sensors are advantageous because they have the flexibility to adapt to any given source position. While most mobile sensor strategies designate a trajectory for sensor movement, we instead employ mutual information, based on Shannon entropy, to choose the next measurement location from a discrete set of design conditions.
K E Y W O R D SBayesian inference, inverse problem, mutual information, sensor placement, source localization