We discuss key parameters that affect the reliability of hybrid simulations in the aqueous phase based on an efficient multi-scale coarse-grained polarizable pseudo-particle approach, denoted as pppl, to model the solvent water, whereas solutes are modeled using an all atom polarizable force field. Among those parameters, the extension of the solvent domain (SD) at the solute vicinity (domain in which each solvent particle corresponds to a single water molecule) and the magnitude of solute/solvent short range polarization damping effects are shown to be pivotal to model NaCl salty aqueous solutions and the hydration of charged systems, such as the hydrophobic polyelectrolyte polymer that we have recently investigated [Masella et al., J. Chem. Phys. 155, 114903 (2021)]. Strong short range damping is pivotal to simulate aqueous salt NaCl solutions at moderate concentration (up to 1.0M). The SD extension (as well as short range damping) has a weak effect on the polymer conformation; however, it plays a pivotal role in computing accurate polymer/solvent interaction energies. As the pppl approach is up to two orders of magnitude computationally more efficient than all atom polarizable force field methods, our results show it to be an efficient alternative route to investigate the equilibrium properties of complex charged molecular systems in extended chemical environments.