2024
DOI: 10.3390/info15020072
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Quantum Technologies for Quantum Support Vector Machines

Filippo Orazi,
Simone Gasperini,
Stefano Lodi
et al.

Abstract: Quantum computing has rapidly gained prominence for its unprecedented computational efficiency in solving specific problems when compared to classical computing counterparts. This surge in attention is particularly pronounced in the realm of quantum machine learning (QML) following a classical trend. Here we start with a comprehensive overview of the current state-of-the-art in Quantum Support Vector Machines (QSVMs). Subsequently, we analyze the limitations inherent in both annealing and gate-based techniques… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 25 publications
0
0
0
Order By: Relevance