Original scientific paperBecause an electric scooter driven by permanent magnet synchronous motor (PMSM) servo-driven system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive modified recurrent Legendre neural network (NN) control system, which has fast convergence and provide high accuracy, is proposed to control for PMSM servo-driven electric scooter under the external disturbances and parameter variations in this study. The novel adaptive modified recurrent Legendre NN control system consists of a modified recurrent Legendre NN control with adaptation law and a remunerated control with estimation law. In addition, the online parameter tuning methodology of the modified recurrent Legendre NN control and the estimation law of the remunerated control can be derived by using the Lyapunov stability theorem and the gradient descent method. Furthermore, the modified recurrent Legendre NN with variable learning rate is proposed to raise convergence speed. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme.Key words: Permanent magnet synchronous motor, Legendre neural network, Lyapunov stability Dinamički odziv nove adaptivne modificirane povratne Legendrove neuronske mreže upravljanja sinkronim motorom s permanentnim magnetima za električni skuter. S obzirom da električni skuter pogonjen servo sustavom sa sinkroni motor s permanentnim magnetima ima nelinearnu dinamiku i vremenski promjenjive parametre, njegov dinamički model nije jednostavno odrediti u svrhu dizajniranja linearnog regulatora. Kako bi se riješio taj problem te povećala robusnost predložen je sustav upravljanja korištenjem adaptivne modificirane povratne Legendrove neuronske mreže za upravljanje skuterom pogonjenim servo sustavom sa sinkronim motorom uz prisustvo vanjskog poremećaja i promjenjivih parametara. Predloženo upravljanje ima brzu konvergenciju i visoku preciznost. Sustav upravljanja sastoji se od modificirane povratne Legendrove neuronske moreže s adaptivnim zakonom upravljanja i estimacijom. Dodatno, on-line podešavanje parametara takvog sustava može se dobiti korištenjem Ljapunovljevog teorema o stabilnosti sustava i gradijente metode. Modificirana povratne Legendrove neuronska mreža s promjenjivim vremenom učenja predložena je za povećanje brzine konvergencije. Ispravnost predložene sheme upravljanja provjerena je eksperimentalno.Ključne riječi: sinkroni motor s permanentnim magnetima, Legendrova neuronska mreža, stabilnost po Ljaponovu