DOI: 10.17077/etd.tfw2c8hx
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Runge-Kutta and quasi-Newton methods for unconstrained nonlinear optimization

Abstract: Finding a local minimizer in unconstrained nonlinear optimization and a fixed point of a gradient system of ordinary differential equations (ODEs) are two closely related problems. Quasi-Newton algorithms are widely used in unconstrained nonlinear optimization while Runge-Kutta methods are widely used for the numerical integration of ODEs. In this thesis, hybrid algorithms combining low-order implicit Runge-Kutta methods for gradient systems and quasi-Newton type updates of the Jacobian matrix such as the BFGS… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance