Growing the hydrogen economy requires improving the stability, efficiency, and economic value of water-splitting technology, which uses an intermittent power supply from renewable energy sources. Alkaline water electrolysis systems face a daunting challenge in terms of stabilizing hydrogen production under the condition of transient start-up/shut-down operation. Herein, we present a simple but effective solution for the electrode degradation problem induced by the reverse-current under transient power condition based on a fundamental understanding of the degradation mechanism of nickel (Ni). It was clearly demonstrated that the Ni cathode was irreversibly oxidized to either the β-Ni(OH) 2 or NiO phases by the reverse-current flow after shut-down, resulting in severe electrode degradation. It was also determined that the potential of the Ni electrode should be maintained below 0.6 V RHE under the transient condition to keep a reversible nickel phase and an activity for the hydrogen evolution reaction. We suggest a cathodic protection approach in which the potential of the Ni electrode is maintained below 0.6 V RHE by the dissolution of a sacrificial metal to satisfy the above requirement; irreversible oxidization of the cathode is prevented by connecting a sacrificial anode to the Ni cathode. In the accelerated durability test under a simulated reverse-current condition, lead was found to be the most promising candidate for the sacrificial metal, as it is cost effective and demonstrates chemical stability in the alkaline media. A newly defined metric, a reverse-current stability factor, highlights that our system for protecting the cathode against the reverse-current is an efficient strategy for stable and cost effective alkaline hydrogen production.